首页> 外文OA文献 >Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming‑induced drag forces
【2h】

Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming‑induced drag forces

机译:在微观尺度的液体中形成逆Chladni图案:声辐射和流引起的拖曳力的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While Chladni patterns in air over vibrating plates at macroscale have been well studied, inverse Chladni patterns in water at microscale have recently been reported. The underlying physics for the focusing of microparticles on the vibrating interface, however, is still unclear. In this paper, we present a quantitative three-dimensional study on the acoustophoretic motion of microparticles on a clamped vibrating circular plate in contact with water with emphasis on the roles of acoustic radiation and streaming-induced drag forces. The numerical simulations show good comparisons with experimental observations and basic theory. While we provide clear demonstrations of three-dimensional particle size-dependent microparticle trajectories in vibrating plate systems, we show that acoustic radiation forces are crucial for the formation of inverse Chladni patterns in liquids on both out-of-plane and in-plane microparticle movements. For out-of-plane microparticle acoustophoresis, out-of-plane acoustic radiation forces are the main driving force in the near-field, which prevent out-of-plane acoustic streaming vortices from dragging particles away from the vibrating interface. For in-plane acoustophoresis on the vibrating interface, acoustic streaming is not the only mechanism that carries microparticles to the vibrating antinodes forming inverse Chladni patterns: in-plane acoustic radiation forces could have a greater contribution. To facilitate the design of lab-on-a-chip devices for a wide range of applications, the effects of many key parameters, including the plate radius R and thickness h and the fluid viscosity μ, on the microparticle acoustophoresis are discussed, which show that the threshold in-plane and out-of-plane particle sizes balanced from the acoustic radiation and streaming-induced drag forces scale linearly with R and √μ, but inversely with √h.
机译:尽管已经对宏观振动板上方空气中的Chladni模式进行了深入研究,但最近已报道了水中微观尺度上的Chladni反向模式。然而,将微粒聚焦在振动界面上的基本物理原理仍不清楚。在本文中,我们对与水接触的固定振动圆板上的微粒的声电泳运动进行了定量的三维研究,重点是声辐射和流动引起的阻力的作用。数值模拟显示了与实验观察结果和基本理论的良好比较。尽管我们提供了振动板系统中依赖于三维尺寸的微粒轨迹的清晰演示,但我们表明,声辐射力对于在平面外和平面内微粒运动中液体中逆Chladni图案的形成至关重要。对于平面外微粒声电泳,平面外声辐射力是近场中的主要驱动力,可防止平面外声流涡流将微粒从振动界面拉开。对于振动界面上的平面声电泳,声流并不是将微粒带到形成反Chladni图案的振动波腹的唯一机制:平面声辐射力可能有更大的贡献。为了促进针对广泛应用的芯片实验室设备的设计,讨论了许多关键参数(包括板半径R和厚度h和流体粘度μ)对微粒声电泳的影响,这些结果表明由声辐射和流引起的拖曳力平衡的阈值平面内和平面外颗粒尺寸与R和√μ成线性比例关系,而与√h成反比。

著录项

  • 作者

    Lei, Junjun;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号